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A method to generate two-dimensional orthogonal grids in simpiy and doubly connected 
domains is given. The method not only generates the grids but also finds the modulus of the 
domain simultaneously. Also, the NavierrStokes equations are solved in some doubly connec- 
ted domains. The insteady vorticity stream function approach is used. The stream function on 
one of the boundaries has to be updated at every time step. Comparisons are made between 
numerical and experimental results; quite good agreement can be achieved. \F !987 Academic 

Press, Inc 

PART I 

Past research shows that the numerical solution of partial diffcrc~t~al equations 
requires an accurate numerical representation of the boundary cQnditio~s. 
best be achieved by having a boundary conforming coodinate system. 

not only leads to simple application of boundary conditions (as far as 
ming is concerned) but also, in most cases, turns out to be very accurate. 

re are many approaches to generate boundary conforming co~rdi~ates~ the 
most common among them is that developed by Thompson and othe 
However, one drawback of their method is that it does not guarantee o 
coordinates. Of course, for the numerical solution of partial differential 
orthogonal coordinates are not essential, though in some cases highly des 
example, orthogonal coordinates can further simplify application of boundary con- 
ditions of the Neumann type. Another advantage is that they can lead to con- 
siderable simplifications in the finite difference algorithm. owever, an most 
importantly, the accuracy of the solution can be improve 

In this article, we will describe a method to generate orthogonal cQ~rd~~~tcs in 
two dimensions and use these coordinates to solve the Navier-Stokes equations. 

The classical method in two dimensions for the generation of orthogonal naaps 
leads to conformal mappings. However, conformal maps are constrained to have 
equal scale factors in all directions, so that a small circle or square in one domain 
gets mapped onto a small circle or square in another domain, which may lead to 
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374 RANGWALLA AND MUNSON 

unsuitable grids for the generation of numerical solutions [4]. To overcome this 
difficulty, some authors have used a constant scale factor in the whole domain 
[S, 61. However, the scale factor cannot be known a priori but evolves as the 
solution is reached. 

Mobley and Stewart [7], using monotonic functions to replace their conformal 
variables, pointed out a subtle but important concept of the conformal module. 
This concept has been elucidated in [S, 91 and will play a central role in our 
method, as will be seen in the next few sections. A further development occurs in 
[lo], where the authors distinguish between two kinds of methods, namely the 
strong constraint method and the weak constraint method. Our method will be of 
the strong constrained kind where the shape of the domain is known. In [ 111 the 
weak constraint method of [lo] was investigated. There it was found that the 
method works only for domains with a plane of symmetry. However, this is not too 
much of a disadvantage for many classes of domains. 

In the present paper, we will develop a method to generate orthogonal coor- 
dinates in two dimensions for both simply and doubly connected domains. The 
boundary of the domains will be known but not the boundary correspondence. The 
grids for some of the doubly connected domains will then be used to solve the 
Navier-Stokes equations. This will be shown in Part II of this article along with 
some experimental results. 

2. Theory and Method 

This section deals with the governing equations for generating the grids and the 
numerical method for solving them. The mapping is restricted to simply or doubly 
connected domains in two dimensions. The equations for the simply connected 
domain will be developed first, followed by that for the doubly connected domain. 

Consider a bounded, simply connected domain in (x, y) space (Fig. 1 ), which we 
want to map onto a rectangular region in (c, q) space. We want to achieve this so 

Y 

FIG. 1. Mapping of a simply connected domain in the (x, y) plane to a rectangle in the (5, 9) plane 
with sides of length a and b. 
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that the points A, B, C, and D get mapped to the points A’, B’, C’, an$ 
tively. Also, we want the mapping to be orthogonal. Suppose ~(5, q) and ~(5, q) are 
mappings that satisfy the equations 

ax 1 ay -= 
all 

---. 
ax, Yf $4 

These equations ensure that the mapping is orthogonal, where K(x, y) is a function 
that determines the relative stretching in the map in the two directions. [K(x, y) is 
restricted to be strictly greater than zero and bounded.] or the special case of 
K(x, ;i) = 1, Eqs. (1) become the Cauchy-Riemann equations. We do not directly 
solve Eqs. (l), but we solve a set of equations that can be derived from them and 
are second order. The equations we choose to solve are 

Equation (2a) is obtained by differentiating Eq. (la) with respect to 4, Eq. (lb) with 
respect to q, and adding the results. Equation (2b) is derived similarly. 
there is no particular reason why the form of the equations chosen is th 
Eqs. (2). We could have chosen the formulation given in [lo]. Equations (2) by 
themselves do not assure orthogonality. We have to apply the boundary conditions 
properly and take into account the modulus of the domain The definition of the 
modulus follows. Since we want to “fix” four points, the ratio of the sides of the rec- 
tangle in the (5, q) plane cannot be arbitrary, but it must depend upon the domai 
and K(x, JJ) (see [9]). This ratio can be considered the modulus of the domain an 
is given by 

where V&u = 0, with u = 0 on D’C’, u = 1 on A’S, and &la{ = 0 on A’ 
In fact, u = q/a and hence it is trivially true that Eq. (3) is an identity. 
by itself is not very useful, but it can be converted to 

b 
-= 
a 
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where &t is the area of the image in the (x, y) plane of an elemental area in the 
(t, y) plane. The gradient of u, along lines of constant 5, is given by 

The right-hand side of Eq. (4) would have to be evaluated numerically. Also, since 
u = ~(x, y)/a, it is automatically known on lines of constant ‘1. If we choose an 
Mx N grid (i.e., i running from 1 to M and j running from 1 to N), then 
d< = b/(M-- 1) and dy = a/(N- 1). Before we describe the steps in the numerical 
method, we define a few terms. By the phrase “interior of the domain,” we mean 
those points (i, j), such that 2 < i < A4 - 1 and 2 < j < N - 1. By the phrase “interior 
of the interior,” we mean those points (i, j), such that 3 < id M- 2 and 
3<j<N-2. 

The numerical method can be described by the following steps: 

(1) Choose an initial grid. 

(2) Choose the ratio b/a. 

(3) Iterate Eqs. (2a) and (2b) once in the interior of the domain. The 
iteration scheme is a simple iteration with relaxation. For points adjacent to the 
boundary, the boundary points in the iteration are replaced by Eqs. (1). That is, we 
have Neumann boundary conditions. The normal derivative is represented by one- 
sided, second-order, three-point differencing. The right-hand side is lagged by one 
step. 

(4) After the third step, we have the positions of the grid points in the 
interior of the domain. Hence, we know the positions of the grid points just 
adjacent to the boundaries. Perpendiculars are then dropped from these adjacent 
grid points onto the boundary to obtain new boundary correspondence. For exam- 
ple, if one of the boundaries is 5 = constant = &,, then the adjacent point would be 
x(&, + d<, q), ~(5, + d& q), and the perpendiculars from these points would be 
dropped onto the 4 = to boundary. If more than one perpendicular could be drop- 
ped from a point, the shortest perpendicular should be chosen. 

(5) With the new boundary correspondence, and with the help of Eqs. (l), 
obtain new points just adjacent to the boundary. Again, the normal derivative at 
the boundary is represented by one-sided, second-order, three-point finite differen- 
cing. 

(6) Use the new points just adjacent to the boundary as Dirichlet conditions 
and iterate Eqs. (2a) and (2b) in the interior of the interior. (Maximum number of 
iterations used was 5. This number of iterations will be referred to as the number of 
“inner iterations.“) Steps (5) and (6) seem to stabilize the method. 

(7) Go back to step (3) if not converged or if the total number of iterations is 
less than some predelined number. This number will be referred to as the number of 
“outer iterations.” 
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FIG. 2. Mapping of a doubly connected domain in the (x, v) plane to an annulus in the (7, 0) plane 
with inner radius ri and outer radius rz. 

(8) Check the ratio (or modulus) b/a by numerical integration of the rig&“- 
e of Eq. (4). 

(9) If the new ratio does not match the old one, change it and go back to 
step (3); otherwise stop. Note that changing the ratio nging Al or 

dy. (We can always keep one side fixed in length.) and N con- 
stant 

For points just adjacent to the corner point, steps (4) and (5) are a bit di 
as e~p~ai~e~ in the Appendix. 

TO a grid in a doubly connected domain, the essential steps remain the 
same, he details are a bit different. We map the region to an annulus as shown 
in Fig. 2. 

he contour C, is mapped onto CT, and the contour C, is mapped onto @7. In 
this case, the equations for orthogonal maps are given by 

8.x mx, Y) ay -=-- 
& Y ao 

1 ax 1 aY --= 
r ae -K(x,y)i-' 

iSa) 

(2%) 

Equations (5), however, are not solved directly but are differentiates once more to 
obtain 

a2y 1 1 Py ar’+;g+yZz= dy 1 i -- 1 aHu:ax 1 aKax -----__-- 
r&a% K2rdOdr. 

Again, as in the case of the simply connected domain 
the boundary conditions and take into account ihe 
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cannot achieve the mapping, unless the ratio r2/rl is the correct one. This ratio 
depends upon the domain that we are trying to map and the function K(x, y). It is 
given by 

r2 --cc WD(u) 
7 

rl 

where 

and u satisfies 

with 

y,u=o 

u=o on Cq 

u=l on CF. 

(8) 

(9) 

Equation (9) implies that Eq. (7) is an identity. However, we can transform 
Eq. (8) to 

D(u) = jj K(x, v) (2)’ d4 (10) 

where dA is an elemental area in the (x, v) plane that is the image of the elemental 
area r dr de, and du/dn is the gradient of u along lines of constant 8. The steps 
involved in the numerical application are the same as that for the simply connected 
case, except that now we have only two boundaries on which to drop perpen- 
diculars. Also, the interior of the domain is all of the points that exclude the boun- 
dary points, whereas the interior of the interior is all of the points that exclude the 
boundary points and the points adjacent to the boundaries. 

3. NUMERICAL EQUATIONS AND RESULTS 

We will briefly describe the finite difference formulation used. Since our scheme is 
a simple point iteration with relaxation, the formulation of the numerical equations 
is well known. The numerical analog of Eqs. (2a) and (2b) was an updated 
pointwise relaxation formula. The right-hand side of the equations was lagged by 
one step. The relaxation factor w  did play a role in the convergence of the scheme. 
We found that when the variation in K(x, v) is large, we had to underrelax. The 
minimum underrelaxation factor used was 0.7. However, for cases where K(x, v) is 
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nearly a constant, we could overrelax. An overrelaxation factor of 1.4 was !kx 
all conformal cases and for all the doubly connected cases. However, we nst 
obtain an optimum o by numerical experimentation. Also, the fact that for certain 
cases we had to underrelax does tell us that our numerical method might not be an 
optimum method, and that there is room for a large amount of improvement. 
the point iteration method we have chosen does keep the programming very simple. 

If the point (i,j) is adjacent to the boundary, we have to apply the ~e~rna~~ 
boundary conditions. That is, if the point is (2, j), then the numerical analog of 
Eq. (2a) is 

where RSX,,, is the numerical analog of the right-hand side of Eq. (2a) evaluated at 
(2, j) at iteration level n. We have a similar equation for y. For a point next to t 
corner point, we need to apply the Neumann condition in both directions 

The numerical equations for doubly connected domains are similarly base 
Eqs. (6). Results will first be given for the doubly connected case, and then some 
results for the simply connected case will follow. 

The first numerical experiment was tried on an annulus of inner radius 0.1 and 
outer radius 1. The function K(x, y) was chosen to be 1. This is the conformal case 
where the mapping is known. The theoretical mapping is IOz, where z is t 
plex variable, and the modulus r2/r1 = 10. The numerical results are given in 
Table I. One notable fact is that at every step the grid obtained is fairly orthogonal. 
However, this is because the geometry is admittedly quite simple and smooth. In 
some of the other examples that we tried, the grid at the intermediate steps was not 
always orthogonal. The numerical grid was quite accurate. 

TABLE I 

History of Convergence for the Case of an Annulus 

Step No. of Outer iterations No. of inner iterations Modulus rJrl 

1 9 3 1.01 
2 6 3 4.5815 
3 9 3 8.913757 
4 4 3 10.39872 
5 1 3 10.43659 
9 (final step) 1 3 10.4356 
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(a) (b) 

FIG. 3. Orthogonal grids in an annulus of inner radius 0.35 and outer radius 1: (a) K(x, y) = 3 and 
converged modulus is 1.399945, (b) K(x, y) = 4 and converged modulus is 20.35164. 

(b) 

FIG. 4. Grid in a doubly connected domain-outer boundary is circular and inner body is a tab with 
rounded ends: (a) initial grid, (b) converged grid for K(x, y) = 1; converged modulus is 6.330519, 
(c) converged grid for K(x, y) = 3; converged modulus is 1.851812. 
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The discrepancy between the numerical modulus and the exact is due to t 
cretization involved. An error analysis of the first oder of E 

For this case, e2z’D(U) is approximately equal to 10. 
a 1% error in evaluating D(u), we find that A(r,/r,) 
of magnitude as the error we obtained in evaluating 

Numerical results of other doubly connected cases 
Figs. 4a, b, c. 

In Fig. 3, we have evaluated orthogonal grids for an annular region, where 
K(x, JI) is not equal to one. We find that when K(x, y) > 1, the grid points are 
moved inward, and when K(x, y) < 1, the points are moved outward. This does give 
us one method for clustering the points at a boundary. 

Figure 4 is an example of a domain In which the Navier-Stokes equations were 
solved-a circular outer boundary with a thin tab inner boundary. This dorna~~ is 
not as trivial as the annulus. Since the inner body is so slender, tbe mapping 
show large gradients at certain points. However, this did not seem to cause 
problems. Figure 4a shows the initial grid for both cases. This grid is quite ske 
and the circumferential points on the inner body were purposely “clusters 
wrong locations. Figure 4b shows the converged grid for K(x, y) = 1, an 
shows the converged grid for K(x, y) = 3. As is apparent, choosing X(x, y) greater 
than 1 does cluster the points toward the inner body, a very be~~f~l feature for the 
kinds of flow we will be looking at in the second part. 

Numerical results of simply connected domains are shown in Figs. 5a, b, an 
Figs. (ia, b, and c. Once again, we find that for those cases where the analytia;al 
solution is known, the numerical solution agrees quite well. In Fig. Sa, we have con- 
structed a grid in a rectangular domain of sides 1.5 and 1, respectiv 
K(x, y) equal to 1, the modulus of this domain is i.5, and the grid is a 
Our numerical scheme gave us a modulus of 1.5009 and a grid that 
httle from the theoretical. We then changed K(x, JJ) to 3 for the sa 
grid points. As expected, the modulus changed by a factor of 3, but the grid looked 
the same. This was to be expected. In fact, in [7] this fact is used when mapping ail 
simply connected domains to an A4 x N rectangle. That is, if we have some K(x, v) 
(need not be a constant) and we want to map the domain to any arbitrary 
rectangle, all we have to do is find the right value of S such that the m 
generated by 2X(x, y) will satisfy the constraints of fixing four corner poi 
value of S is not known, but it can be obtained as a part of the iteration s 
pointed out in [7]. We could have done the same, but we wanted to use 
approach as the doubly connected case. 

n Fig. 5b, we have constructed a grid for an arbitrary quadrilateral. The main 
features of this domain are the nonorthogonal corner points. These had to 
specially handled (see Appendix). One thing we do note is the loss in ~rtbo~~~a~it~ 
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(a) 

(b) 

FIG. 5. Grids in some simply connected domains: (a) rectangular domain, K(x, y) = 1; converged 
modulus is 1.5009, (b) simply connected domain, K(x, JJ) = 1; converged modulus is 0.872. 

near these corner points. This is expected because near the corner points, the con- 
stant r and v] lines have high curvature, and the coarse discretization cannot 
approximate it accurately enough. Figures 6a, b, and c are examples of grids for dif- 
ferent K(x, v) values. 

In Fig. 5b the maximum deviation from orthogonality is about 30”. This happens 
at the grid point closest to the obtuse corner. Near this corner the constant 5 and 
constant q lines have very high curvatures. The angles, however, are formed by 
straight line segments joining the grid points. In Figs. 6a, b, and c the maximum 
deviations from orthogonality are 18”, 20”, and 34”, respectively. The largest value 
occurs for two reasons. First, the right-hand corner point is nonorthogonal. Second, 
the relative stretching in the grid is such that the points are moved away from the 
top boundary. The constant 5 lines have a curvature reversal near the right-hand 
corner. This reversal has not been adequetely resolved. 

Also, numerous other examples were tried for both the simply connected domain 
and the doubly connected ones. In all cases, quite good grids resulted. A final 
explanation is due. The grids were plotted on a Tektronix Terminal, and the hard 
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FE. 6. Grids in a four-sided region for different K(x, y): (a) K(x, y) = 1; converged modulus is 
1.550257, (b) K(x, y) =x + y + 1; converged modulus is 3.52179, (c) K(x, y) = l/(x + y + 1); converged 
modulus OS 0.6981274. 

copies were made straight from the terminal. The scales on the x and y axes were 
not the same. That is the reason our figures seem to be shorted a bit in t 
axis. 

4. CONCLUSION 

In this first part, we have presented a numerical technique to generate 
maps. The problems we have essentially solved are the strong constraint as 
in [IO], where the boundary of the domain is known. Unlike some of t 
methods, we have not used any Dirichlet boundary conditions. Also, 
seems to work quite well for highly skewed initial grids. 

In this part, we consider the numerical solution of the Navier-Stokes e~~a~~o~s 
(NS equations) in a two-dimensional doubly connected domain. Also, corn 
with some experiments will be made. 
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We employ the vorticity-stream function formulation of the NS equations, This 
approach has several advantages (see [12]): the main one being the elimination of 
the pressure term. However, this formulation is useful only for those domains where 
the complete boundary correspondence for the stream function is known. For 
domains where the value of the stream function is not known a priori on one of the 
boundaries, but has to be obtained from the solution, this method at first glance 
does not seem appropriate. Consider the flow in an annulus with the outer wall 
rotating and the inner one fixed. We can fix the value of Ic/ on one boundary but 
cannot do so on the other. The value of IJ on the other boundary depends upon the 
velocity of rotation of the outer boundary and the geometry. In this paper, an 
attempt has been made to solve problems of this nature. 

In [13] Thomas and Szewczyk encountered a similar problem. They solved a 
two-dimensional flow over a cylinder and did not fix the value of the stream 
function on the top boundary but allowed it to change. They achieved this by 
recalculating the inlet velocity at every step and then finding the total mass flow 
through the domain. For this they had to assume that a$/& was zero at the inlet. 
However, in the doubly connected domains that we consider, we cannot do this. 
The correct boundary condition for ti is connected to the constraint that fc. dp = 0, 
where c is any closed contour and p is the pressure. 

Admittedly, there have been numerous schemes utilizing the velocity stream 
function approach [ 14-171, where the implementations of the boundary conditions 
have varied from author to author. The results are also quite different. We have not 
made any formal attempt at evaluating the varying methods to see which works 
best. The choices we made were governed by simplicity and convenience in 
programming. 

2. Governing Equations 

The Navier-Stokes equations can be written as 

(13b) 

where Eqs. (13) are written in Cartesian coordinates, I/ is the stream function, Re is 
the Reynolds number, and c is the vorticity. These equations can be transformed 
into the computational coordinates (r, q) to give 
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where subscripts denote differentiation. In Eqs. (14), the ~oe~~~~e~ts are give 

In evaluating the above, use is made of 

where J = xC y, - X, yc is the Jacobian of the transformation. All the di~ere~ce~ in 
the above are central differences. The grid was generated by the method described 
in Part I, and the computational domain (5, y) for the solution of the NS 
was the index of the grid points. That is, point (xii, vii) of the grid wa 
onto t = i and q = j. The coordinate { runs in the circumferential directio 
coordinate q runs from the inner to the outer boundary. The tangential v 
the outer circular wall was normalized to one. Note that in Eq. (14) we have not 
used the fact that the grid is orthogonal. 

The boundary conditions on the stream function $ were derived by the co~~~tio~ 
of no slip and the fact that the boundaries are impermeable. Aiso, the gri 
orthogonal to the boundaries. Hence, we have 

$I = constant (undetermined) at p?=n (lGb) 

ati 
dn,=O at v=l (16c) 

where d/&z, is the gradient in the direction normal to the 
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h,, = *?n,v since points (1, q) and (m, r) are the same points in the physical plane. 
The boundary condition on vorticity has to be updated at every time step by 

where p is the radius of curvature of the boundary. 
Before we elaborate upon the numerical equations, we will make a short note on 

the governing equations. For low Reynolds numbers, that is Re + 0, Eqs. (13) 
reduce to the steady Stokes equations. Since it has been the experience of many that 
the unsteady equations are easier to evaluate numerically to convergence, for low 
Reynolds number (Reynolds numbers < l), we instead scaled them by R2/v (R is 
outer radius) to obtain 

V’lj = 5. (18b) 

Hence, as Re + 0, we obtain 

v2i=$ V’ti = i, 

which is the set of equations solved for Stokes flow. 

3. Numerical Equations 

The numerical scheme involved the solution of the following numerical equations. 
The numerical analog of Eq. (18a) in the (5, q) system was 

4#:+ 1,j - 21;; l + i;‘;,J 

(19a> 
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and numerical analog of Eq. (18b) was 

The boundary conditions for I+!I are given by 

$i,l =o 

$62 = $$i,3 

where 

The value of $J~,, is a constant, which is updated at every time step. This will be 
explained later. Equation (20b) is second order accurate, whereas Eq. (20~) is only 
first order. These numerical representations were chosen for convc~i~~~e. 
Equation (20~) worked quite well, because the grid was orthogonal. 
the inner boundary we used a second order representation to preserve accuracy, 
because the gradients can be quite large there. The coefficients in Eq. (I 
are functions of xg, yg, x1, yV9 J, U, v, evaluated at point ij and Re. The 
scheme is a line relaxation scheme with updating. J[t is implicit in the j 
The convection terms are upwinded and are of first order. 

The numerical scheme is made up of the following steps: 
Initial conditions are first chosen. They are $i,,, = 0 for all i, j. The veko 

and vi,, are set equal to zero except at the outer boundary where they are 
give a total tangential velocity of one and a zero normal velocity. The v 
is chosen to he zero everywhere. We then proceed as follows: 

(1) Evaluate the vorticity at the boundaries, using either the velocity field or 
the stream function. Here, we use one-sided, second-order, three-poi differences if 
the velocity field is used. Let the vorticity evaluated at the boundary given by i”,. 
Then the vorticity at the boundary is set equal to 

g=“=oi;,+(1-0)~d (21) 

where o is an underrelaxation parameter. Typical values for w  ranged from 0.1 to 
0.5. ~~derre~axatiQn seems to enhance the stability of the scheme. 
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(2) Equation (19a) is marched by 1 time step to obtain [;+I. The method is 
implicit in thej direction with updating. We obtain a tridiagonal matrix that can be 
solved using the Thomas algorithm. 

(3) The stream function, $, at the outer wall is updated by using 
f dc/dn ds = 0. The details of this step will be shown later. 

(4) The stream functions, $i,2 and tii,+ 1, are evaluated using Eqs. (20b) and 
(2Oc). 

(5) Equation (19b) is iterated (implicitly inj with updating) to convergence 
for i=l-+mandj=3-+n-2. 

(6) Once the stream function is known, the velocity field is evaluated 
everywhere in the field. 

(7) Check for convergence in the stream function and vorticity fields. 

(8) If not converged, go back to step (1). 

In step (3) of the numerical scheme, we had mentioned that the value of $ has to 
be updated at every time step at the outer boundary. We used the constraint that 
f al/an ds = 0, w  h ere the line integral is along the outer boundary, and al/an is the 
normal derivative of the vorticity at the outer boundary. This constraint was chosen 
because we know that for an impermeable moving boundary, with the normal 
velocity equal to zero and constant tangential velocity, the pressure gradient along 
the boundary is related to the normal gradient of the vorticity. Also, in this case, 
f al/an ds = 0 implies f dp = 0 where the line integral is taken along the outer boun- 
dary. For the case of Stokes flow, this would further imply that f dp = 0 for any 
closed curve c. 

In our problem, we use f a[/‘ldn ds to update the stream function at the 
outer circular wall. We can represent the normal derivative of vorticity by 
(i, - [wPl)/(dnl). The vorticity, i, at the wall can be expressed in terms of the 
stream function at the wall. We used V’$ = [. At the wall we used one-sided dif- 
ferencing, whereas at the interior point we used central differencing. Use was also 
made of the fact that the grid was orthogonal, and hence some of the terms were 
dropped. Finally, we can obtain a[/& at the outer wall as a function of the stream 
function, It/w, at the outer wall. Thus, setting the numerical integration of f ai/& ds 
on the outer boundary equal to zero gives us a new value for tiw. Note that the 
finite difference expression should be stable in the sense that if f d&h ds is greater 
than zero, then Y’, should increase, and if it is less than zero, Y,,, should decrease. 
To assure this, in the finite difference analog of at/an at the outer wall, the stream 
function at the point adjacent to the wall was replaced by Eq. (20~). 

4. Results and Conclusions 

The problem we chose to solve was the flow in a rotating circular cylinder with a 
stationary tab with rounded ends. This geometry gave rise to various flow patterns, 
depending upon the location and size of the tab and the Reynolds number. Figure 7 
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FIG. 7. Type of doubly connected domain in which the Navier-Stokes equations were soived; the 
outer circular wall rotates. 

shows the geometry. In Part I, we generated orthogonal grids in similar, 
connected domains. 

The first case we considered was the flow in an annulus with the inner radius of 

0.35 and outer radius of 1, where the outer boundary rotates. This case was chosen 
because we know the analytic solution. As seen in Fig. 8, the numerical results com- 
pare quite favorably with the analytic. Also, the value of the stream, function at the 
outer boundary predicted by the numerical scheme is 0.3503, whereas the ~~~~yt~~ 
value is 0.3534. This case was run at Reynolds number zero. (Note, the a~a~yti~~~ 
solution at higher Reynolds number is the same.) To check the behavior of the 
scheme at a higher Reynolds number, we ran this same case at different Reyno 
numbers. For Reynolds numbers greater than 1, we used the numerical analog 
Eq. (13b). For Reynolds number less than 1, we used the numerical analog of 
Eq. (18a). The underrelaxation factor w  in Eq. (21) was 0.3 for a 31 x 21 gr 
time step was 5 x 10p3. At convergence, the maximum change in the 
function from one step to another was of the order of 1W6 and that for the vor- 
ticity was 10W5. 

We found that the results were quite independent of the eynolds number, as 
they should be for such a case. We tried a maximum Reynolds number of 500. 
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FIG. 8. Comparison of theoretical and numerical results for an annulus with Y, = 0.35 and r2 = 1.0: 
(a) tangential velocity, U,, (b) vorticity, [. 

Next, we tried doubly connected domains of the type shown in Fig. 7. Figure 9 
shows the direction of the velocity vectors for a particular position of the tab. Three 
different flow patterns are possible for different tab position. These are sketched in 
Fig. 9. When the tab is sufficiently far from the center, we have a single eddy. As the 
tab is brought inward, the eddy splits up into two eddies, separated by a saddle 
point. If we move the tab further toward the center, the saddle point gets attached 
to the end of the tab, with one eddy on either side of the tab. This was found 
numerically and verified experimentally for low Reynolds numbers of the order of 
0.1. (A brief overview of the experimental techniques used to help verify some of the 
numerical results obtained is presented in [lS].) 

To make comparisons with the experiments, numerous numerical runs were 
made for small changes in the tab position given in terms of e, and ey (with eY kept 
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N=l N=Z 

FIG. 9. Stokes flow in a doubly connected domain: (a) flow direction obtained numerically when 
e, = 4.1, e, = 0, R = 1.0, I= 0.5, h = 0.02, (b) general structure of flow for various values of e,. 

to zero). As we can see from Fig. 10, the numerical results an 
results compare very favorably. 

Another feature of these flows was the high degree of sensitivity at low 
number to the geometry (see [19]). Experiments showed that if the tab w  
slightly away from the centerline, that is, eY is not zero but is of the same order of 
magnitude as the tab thickness, the deviation from s ry of the 
siderable. We did try these unsymmetric cases numerica hat we f~ t 
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FIG. 10. Structure of flow field as a function of tab position; comparison of numerical and 
experimental results. 

the numerical results also exhibited the same degree of sensitivity to the geometry 
as the experiments did. This further strengthened the validity of our numerical 
scheme. 

Numerical results for higher Reynolds numbers were also carried out. 
Figures 1 la, b, c show these results for a geometry that was symmetric about the x 
axis. We note that the flow pattern deviates from the symmetric as the Reynolds 
number increases. The general structure of the flow is as shown in Fig. 12. With 
negligible inertia (Re < 1), the flow is symmetrical, with one isolated stagnation 
point (labeled S in Fig. 12) in line with the tab. Inertia effects (Re B 1) cause this 
stagnation point to shift as shown in Fig. 12 as the Reynolds number is increased. 
The location of the stagnation point, given in terms of a and L/D, where D is the 
tank diameter, is shown as a function of Re in Fig. 13. The comparison between 
theory and experiment is excellent. 

Another feature of this flow as shown by both the numerical and experimental 
results is the occurrence of a small recirculating separation zone near the end of the 
tab (labeled R in Fig. 12) for Re 2 200. This inertia-induced recirculation is due to 
the inability of the fluid to turn the relatively sharp corner around the end of the 
tab when inertia becomes important. 

Another feature observed both numerically and experimentally was the position 
of the rear stagnation point (labeled P in Fig. 12) as a function of Reynolds num- 



FIG. 11. Navier-Stokes solutions for er= -0.1, e,.=O, R= 1.0, 1 =OS, h =0.02 at higher Reynolds 
number: (a) Re = 10, (b) Re = 50, (c) Re = 500. Approximate stagnation point location denoted by (” ). 

FIG. 12. Nonsymmetry of flow pattern structure when inertia effects are important (Re 9 I). 
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FIG. 13. Comparison of numerical and experimental results for the effect of inertia on the flow 
structure. 

ber. In the limit of Re -+ 0 the stagnation point was positioned at the end of the tab; 
that is, I = 0. However, as Re increased, I/D increased until l/D r 0.07 at Re E 40. A 
further increase in Re caused the stagnation point to move back toward the end of 
the tab. For example, with Re = 500 we obtained l/D = 0.02. 

Thus, both the general structure and the specific details for the test flow were 
very well determined by the numerical technique used. This was true for both the 
inertia-free (Re + 0) and the inertia-governed (Re $1) flows. The numerical values 
for L/D and CI were obtained by estimating the stagnation point location within the 
appropriate grid spacing. This error, when coupled with the experimental error, is 
of the same size as the difference between the numerical and experimental results of 
Fig. 13. 

5. Conclusions 

The vorticity stream function method can be successfully used in domains where 
the value of the stream function on one of the boundaries is not known, but it has 
to be derived from the solution. Quite good agreements between the numerical and 
the experimental can be achieved. At low Reynolds numbers, we found no need for 
underrelaxing the boundary vorticity. However, at higher Reynolds number, we 
needed underrelaxation for stability. 
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FIG. 14. The mapping of corner points. 

APPENDIX 

e we explain what was done near the corner points for the simply connected 
d n. Consider a point on the boundary in the physical domain, w  
ped to a point on the boundary of the computational domain such that 
are corner points (see Fig. 14). We want BAC to be mapped onto B’A’C’. 

We use the equation 

where pD is the distance of D from A, and K is the value of K(x, y) at A. 
only unknown is p, we can solve for it. Hence we can obtain 

rs = (A()2”, (‘433) 

where rB and rc are the distances of points B and C from A along the bou 
Once points B and C are obtained, a new point D is obtained by apply 

Neumann equations in step (5) (of the numerical method to generate the g 
the two intersecting boundaries and taking the average. 

Even though we have no proof for Eq. (Al), we do have some heuristic 
arguments for it. Since in our scheme for the simply connected domai 
changed the modulus of the domain by changing only dq (keeping A( 
following is true (for any domain): If K(x, y) = K, (a constant), and if 
modulus corresponding to this mapping, and if K(x, y) = K2 (a constant) 
is the modulus corresponding to this mapping, then 
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If K2 = 1, then M,/M, = K,. Also, it follows that all grids generated for a simply 
connected domain for arbitrary constant K(x, y) look the same. Hence, because of 
Eq. (A3) and the way we changed our modulus, Eq. (Al) is correct for constant K. 
However, for a K(x, JJ) that is not a constant, we still apply Eq. (Al) at the corner. 
This is based upon the claim that at any point D, such that K(x, JJ) at D equals KD 
(a constant), the mapping generated by K(x, y) and that generated by K, will be 
very nearly the same in a small neighborhood of D. 
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